===================
== Thomas Pinder ==
===================
Bayesian ML, Causal Inference, and JAX


Research

Papers

2022

  • Identifying latent climate signals using sparse hierarchical Gaussian processes
    Matt Amos, Thomas Pinder, Paul Young
    NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems
    pdf | code
  • LancasterAQ: A High Resolution Street Level Dataset of Ultrafine Particles
    Matt Amos, Douglas Booker, Rachael Duncan, Lily Gouldsbrough, Thomas Pinder, Paul Young, Jeremy Carter
    Under Review
    arXiv | code
  • GPJax; A Gaussian process package in JAX
    Thomas Pinder, Daniel Dodd
    Journal of Open Source Software
    pdf | code
  • Street-Level Air Pollution Modelling with Graph Gaussian Processes
    Thomas Pinder, Kathryn Turnbull, Christopher Nemeth, David Leslie
    ICLR: AI for Earth and Space Science
    pdf | presentation

2021

  • Gaussian Processes on Hypergraphs
    Thomas Pinder, Kathryn Turnbull, Christopher Nemeth, David Leslie
    In submission
    arXiv | presentation

2020

  • A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK
    Thomas Pinder, Michael Hollaway, Christopher Nemeth, Paul Young, David Leslie
    In submission
    arXiv
  • Stein Variational Gaussian Processes
    Thomas Pinder, Christopher Nemeth, David Leslie
    In submission
    arXiv | code

2019

  • GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
    Jamie Fairbrother, Christopher Nemeth, Maxime Rischard, Johanni Brea, Thomas Pinder
    Journal of Statistical Software
    Paper | code

2018

  • Towards Large Scale Ad-hoc Teamwork
    Elnaz Shafipour Yourdshahi, Thomas Pinder, Gauri Dhawan, Leandro Soriano Marcolino, Plamen Angelov
    IEEE International Conference on Agents
    pdf

Talks