=================== == Thomas Pinder == ===================
Bayesian ML, Causal Inference, and JAX
Research
Papers
2022
Identifying latent climate signals using sparse hierarchical Gaussian processes Matt Amos, Thomas Pinder, Paul Young NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems pdf | code
LancasterAQ: A High Resolution Street Level Dataset of Ultrafine Particles Matt Amos, Douglas Booker, Rachael Duncan, Lily Gouldsbrough, Thomas Pinder, Paul Young, Jeremy Carter Under Review arXiv | code
GPJax; A Gaussian process package in JAX Thomas Pinder, Daniel Dodd Journal of Open Source Software pdf | code
Street-Level Air Pollution Modelling with Graph Gaussian Processes Thomas Pinder, Kathryn Turnbull, Christopher Nemeth, David Leslie ICLR: AI for Earth and Space Science pdf | presentation
2021
Gaussian Processes on Hypergraphs Thomas Pinder, Kathryn Turnbull, Christopher Nemeth, David Leslie In submission arXiv | presentation
2020
A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK Thomas Pinder, Michael Hollaway, Christopher Nemeth, Paul Young, David Leslie In submission arXiv
Stein Variational Gaussian Processes Thomas Pinder, Christopher Nemeth, David Leslie In submission arXiv | code
2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language Jamie Fairbrother, Christopher Nemeth, Maxime Rischard, Johanni Brea, Thomas Pinder Journal of Statistical Software Paper | code
2018
Towards Large Scale Ad-hoc Teamwork Elnaz Shafipour Yourdshahi, Thomas Pinder, Gauri Dhawan, Leandro Soriano Marcolino, Plamen Angelov IEEE International Conference on Agents pdf